
Réseau local LAN

- Un réseau local "LAN" relie des appareils d'un périmètre rapproché: une maison, plusieurs bâtiments.
- ➤ Chaque appareil doit avoir <u>une carte réseau</u> pour communiquer : chaque carte réseau ayant un identifiant unique au monde : **l'adresse MAC**
- Les appareils sont reliés entre eux par <u>un commutateur (ou switch)</u> qui doit disposer d'autant <u>de ports</u> (sorte de prise pour les câbles) qu'il y a d'appareils.
- Le commutateur dispose d'une table MAC qui contient toutes les adresses des appareils du réseau local.
- La box d'une maison joue aussi le rôle de commutateur (avec câbles ou wifi)
- Le protocole Ethernet (norme 802.3) définit les échanges entre deux machines proches.

Réseau local LAN: réseau informatique permettant l'échange de donnée au sein d'une entreprise ou d'un logement individuel

réseau LAN d'une entreprise ou d'une école

Postes clients: Ce sont des postes de travail (ordinateur). Ils sont connectés au réseau par l'intermédiaire d'une carte réseau (avec ou sans fil) et communiquent avec les serveurs et autres postes par l'intermédiaire du routeur. Ils ont chacun une adresse IP (ex:125.32.56.2) pour les reconnaitre.

Serveurs: ordinateur puissant choisit pour administrer le réseau (organisation, droit d'accès des utilisateurs). Il est utilisé aussi pour mettre son disque dur en partage accessible aux postes clients.

Commutateur (ou switch): permet de transférer les informations d'un ordinateur à un autre du réseau. A chaque ordinateur connecté au routeur on attribue <u>un numéro spécifique de port</u>. Seul un seul ordinateur recevra l'information correspondant à son port. (confidentialité, aucune donnée inutilement transmise ailleurs dans le réseau)

Borne wifi: agit comme un commutateur mais avec les informations qui sont transmise par onde (et non filaire)

Routeur (modem): Le routeur permet à tous les utilisateurs d'un réseau d'avoir accès à internet: Le routeur aura une adresse IP donnée par le FAI différente des adresses de son réseau local. Il fera donc la transition entre son adresse Internet et celles du réseau local.

On peut lui ajouter une « passerelle » dont le but est de sécuriser le réseau des attaques venant d'internet (antivirus)

La Box : Elle remplace


<u>Le commutateur</u> : elle fait donc le lien entre les PC bureau, l'imprimante, les téléphones portable, les smartphone, la box télévision.

<u>La borne Wifi</u>: par l'intermédiaire d'une carte réseau Wifi, les liens peuvent donc se faire sans fil et donc par ondes.

<u>Le Routeur</u> : Permet l'accès de tous les utilisateurs du réseau local familliale à l'internet. <u>Un disque dur</u> : faisant office de serveur

L'adresse MAC d'un appareil

- L'adresse MAC est un **identifiant unique**, stockée dans la carte réseau, qui caractérise votre appareil : Cette adresse est créée par le constructeur de la carte.
- La carte réseau permet de faire transiter un ensemble de données d'un appareil à un autre.
- L'échange se fait au travers d'une trame composée de l'adresse MAC source (appareil qui envoie), d'une adresse MAC destination (appareil que l'on souhaite joindre), et des données à transiter (ensemble de données binaires).
- ➤ Une adresse est codée sur 48 bits, sous forme de 12 chiffres de 4 bits en hexadécimal. Exemple : 00-1E-33-1D-6A-79
- Format de l'adresse :
 - → 24 premiers bits: identifie le constructeur de carte réseau (Broadcom, Intel, Atheros...)
 - → 24 derniers bits : numéro unique de la carte parmi toutes ses cartes réseaux qu'il construit.
- > 2 commandes pour connaître l'adresse MAC de son PC (taper d'abord la commande cmd en bas à droite)

Comment fonctionne le commutateur ? (ou switch)

Il relie les cartes réseaux de chaque élément d'un réseau local grâce à de nombreux ports de connexion permettant de connecter à l'arrière les ordinateurs, imprimantes, tablettes, ...

Le routeur va analyser <u>l'en-tête des données</u> en transit (les deux appareils étant dans un réseau local LAN et donc étant proches).

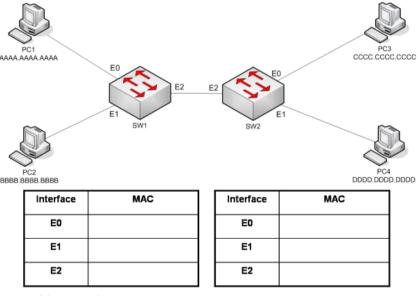
Cet en-tête contient

- l'adresse MAC de l'appareil émetteur des données
- l'adresse MAC de l'appareil qui doit recevoir les données

Cela lui permettra de remplir au fur et à mesure une table des adresses MAC du réseau.

Fonctionnement des switchs (ou commutateurs)

Prenons l'exemple ci-dessous ou quatre PC sont branchés physiquement sur les switchs



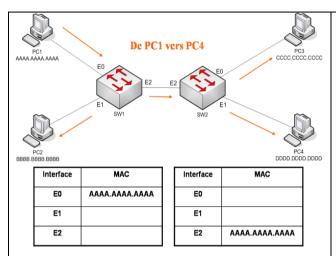

Table MAC du routeur SW1

Table MAC du routeur SW2

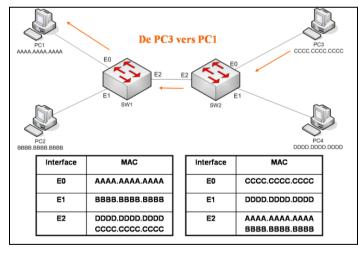
- Dans chaque switch se trouve une base de données appelée « table MAC » ou ARP.
- Cette table fait le lien entre les ports physiques du switch (E0, E1, E2) et les adresses MAC sources qui arrivent sur ces ports (adresse sous forme de AAAA.AAAA.AAAA) ainsi que les adresses IP correspondantes (adresses sous forme X.X.X.X)
- > <u>Lorsqu'on démarre un switch</u>, ce dernier ne peut pas savoir quel PC est connecté sur tel ou tel port, <u>la table est donc logiquement vide</u>.

Remplissage de la table MAC

Début de remplissage par la trame initiée par PC1 à destination de PC4

- 1. la trame sort de la carte réseau de PC1 avec :
 - adresse MAC source = AAAA.AAAA.AAAA
 - adresse MAC destination = DDDD.DDDD.DDDD

2. la trame arrive sur le port E0 du switch SW1


- le switch extrait l'adresse MAC source et l'insère dans sa table.
- ➤ le switch extrait l'adresse MAC destination (DDDD.DDDD.DDDD) et la recherche dans sa table : ne trouvant pas cette adresse, il la diffuse sur tous les autres ports (£1 et £2).

3. <u>la trame arrive sur le port E2 du switch SW2</u>

- le switch extrait l'adresse MAC source et l'insère dans sa table.
- ➢ le switch extrait l'adresse MAC destination (DDDD.DDDD.DDDD) et la recherche dans sa table : ne trouvant pas cette adresse, il la diffuse sur tous les autres ports (E0 et E1).
- 4. la trame arrive sur la carte réseau du PC4 : gagné!

En générant petit à petit du trafic entre les différents PC, les tables MAC des 2 routeurs vont se remplir.

Quand toutes les tables MAC sont remplies :

- On arrive à l'objectif de ne plus diffuser les trames vers tous les ports car la table contient enfin toutes les adresses
- Au final, on sera exactement où commuter cette trame. (diffusion sur vers un seul port avec un seul trajet en orange)
- la table MAC est effacée à chaque **reboot** (arrêt et redémarrage) du commutateur

Visualisation de la table MAC ou ARP de votre ordinateur

Pour visualiser le contenu de la table, il faut saisir dans l'invite de commande :

>arp -a

- 192.168.1.1 correspond à la box
- 192.168.45 à l'ordinateur connecté en wifi
- 192.168.1.70 à un casque connecté en bluetooth

```
C:\Users\lpich>arp -a
Interface : 192.168.1.81 --- 0x6
 Adresse Internet
                        Adresse physique
                                               Type
 192.168.1.1
                                               dynamique
                        e4-5d-51-31-55-e8
 192.168.1.45
                        60-35-c0-fe-b0-10
                                               dynamique
  192.168.1.70
                        52-20-e4-45-26-60
                                               dynamique
                         ff-ff-ff-ff-ff
                                               statique
 192.168.1.255
  224.0.0.2
                        01-00-5e-00-00-02
                                               statique
```